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Quadrant analysis has been used to investigate the events contributing to the Reynolds 
shear stress in zero-pressure-gradient turbulent boundary layers over regularly 
arrayed rough surfaces of several different densities, and over a smooth surface. By 
partitioning the stress into ejections, sweeps, and inward and outward interactions, 
it is shown that sweeps account for most of the stress close to rough surfaces, and that 
the relative magnitude of the sweep component increases both with surface roughness 
and with proximity to the surface. The sweep-dominated region delineates a 'rough- 
ness sublayer ' with a depth of up to several roughness element heights, in which the 
turbulence characteristics depend explicitly on the roughness. I n  the remainder of the 
inner (or constant-stress) layer, and in the outer layer, the flow obeys familiar similarity 
laws with respect to surface roughness. 

The difference AfJ0 between the fractional contributions of sweeps and ejections to 
the stress is shown to be well related everywhere to the third moments of the stream- 
wise and normal velocity fluctuations. Experimental proportionalities are established 
between the third moments and and are shown to agree with predictions made 
from cumulant-discard theory. 

The time scale for the passage of large coherent structures past a fixed point, T, is 
assumed proportional to the mean time between occurrences in a specified quadrant 
of an instantaneous stress urw' at least H times the local mean stress u'w', where H is 
a threshold level. For both the ejection and sweep quadrants and for any choice of 
H ,  it is found that T scales with the friction velocity u* and the boundary-layer 
thickness 8, such that TuJS is invariant with change of surface roughness. 

- 

1. Introduction 
The nature of turbulent shear flow close to rough surfaces is of obvious importance 

in micrometeorology, although its study in an atmospheric context is not as well 
developed as in engineering applications. Most work on the flow within and just above 
vegetation canopies, for example, has been based on gradient diffusion models which 
assume the turbulence to be locally governed. Several atmospheric studies (reviewed 
by Raupach & Thom 1981) have shown the inadequacy of the approach. 

Recent work (Finnigan 1979a, b )  has shown that canopy turbulence is strongly 
influenced by larger-scale coherent motion in the overlying boundary layer. Such 
notion has been extensively studied in smooth-wall laboratory boundary layers, most 
effort being spent on the outer, intermittent region and the wall region (see, for 
example, recent reviews by Willmarth 1975 and Kovasznay 1977). In  the outer layer, 
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flow visualization (e.g. Falco 1977) and conditional sampling (e.g. Kovasznay, Kibens 
& Blackwelder 1970), as well as long-established space-time correlation methods, have 
identified coherent structures associated with the ‘ bulges ’ in the turbulent/non- 
turbulent interface. These structures are quasi-periodic, and occupy the whole 
boundary-layer depth. They have streamwise and spanwise length scales of the order 
of 56 and S, respectively (6 being the boundary-layer thickness), and live long enough 
for coherence to be preserved over streamwise distances of 106 to 208. The smooth- 
wall region, including the viscous sublayer and adjacent buffer layer, has been shown 
by flow visualization (e.g. Kim, Kline & Reynolds 1971 ; Nychas, Hershey & Brodkey 
1973) to be characterized by a randomly recurring ‘burst cycle ’ in which low-speed 
fluid near the wall is ejected violently into the overlying flow, immediately followed 
in time by a downsweep of higher-speed fluid into the region close to the wall. Intense, 
intermittent Reynolds-stress contributions and turbulence production rates are 
associated with these ‘ejection’ and ‘sweep’ events, as shown with conditional sampl- 
ing techniques by Wallace, Eckelmann & Brodkey (1972) and Lu & Willmarth (1973). 
Various authors (e.g. Willmarth & Lu 1974; Kovasznay 1977) speculated that the 
outer-layer coherent motion is an outgrown manifestation of the bursting process in 
the wall region, partly on the grounds that the frequencies of both are governed by 
outer-layer velocity and length scales. More direct evidence for a link between the two 
comes from the observation of Brown & Thomas (1977) that the mean square fluctua- 
tion in wall shear correlates well with low-frequency velocity fluctuation in the outer 
layer. However, a definite causal sequence has not been established. 

There are far fewer studies of boundary-layer turbulence structure over rough 
surfaces. Grass (1  97 l ) ,  using the hydrogen-bubble technique to visualize open-channel 
turbulent flow over smooth, transitional and rough surfaces, showed that fluidejections 
and sweeps both make strong, intermittent contributions to the Reynolds-stress and 
turbulence production, irrespective of the surface roughness. His observations sug- 
gested that the sweep phase is significant only near the wall, whereas the ejection phase 
is influential through most of the boundary layer. Nakagawa & Nezu (1977) obtained 
conditional measurements in an open-channel flow which showed that sweeps are more 
important than ejections in maintaining the Reynolds stress close to rough surfaces. 

This paper reports an experimental investigation of the structure of Reynolds stress 
in wind-tunnel turbulent boundary layers over a smooth surface and several regularly 
arrayed rough surfaces of different densities. Using an analysis similar to that of 
Nakagawa & Nezu (1977)) it is shown that the relative contributions of ejections and 
sweeps to the Reynolds stress at a single point are quite well determined by the third 
moments of the streamwise and normal velocity fluctuations. The sweep-dominated 
region close to the rough surfaces is clearly identifiable both in the Reynolds-stress 
conditional statistics and also in the third moments. The paper also discusses the effect 
of surface roughness on the mean period between occurrences of large contributions to 
the Reynolds stress by either ejections or sweeps, thereby attempting to infer some- 
thing of the effect of surface roughness on the large, coherent structures in the overlying 
boundary layer. 

It is convenient at  this point to define some terminology. The flow region close to the 
surface, wherein turbulence statistics depend explicitly on the properties of the rough- 
ness, will be called the roughness sublayer. This region forms the wallward part of the 
inner or surface layer, the remainder of which is the matched layer or ‘inertial sublayer ’ 
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(Tennekes & Lumley 1972). General statements about the behaviour of turbulence 
statistics in the roughness sublayer require care, because the mean flow there is three- 
dimensional for most types of roughness. In principle, a spatial average is required 
(Raupach & Thom 1981). 

We take the co-ordinate axes (2, y, z )  to be in the longitudinal, lateral and vertical 
directions, respectively, with the wall lying in a horizontal plane. The velocity vector 
is (u, v, w) ,  so that the (negative) Reynolds stress - u‘w‘ is the wallward flux density of 
streamwise momentum. Overbars and primes denote time averages and departures 
therefrom, respectively. 

The wind-tunnel data used here have already been used to investigate the momentum 
transfer close to rough surfaces from the point of view of flux-gradient relationships 
(Raupach, Thom & Edwards 1980; hereafter referred to as I). A full account of the 
experimental details, and an analysis of the simpler mean properties of the flow field, 
is given there. 

- 

2. Theory 
To describe the total Reynolds shear stress u’w’ a t  a single point as a sum of con- 

tributions from different types of events, it is customary to sort instantaneous values 
of u’w’ according to quadrant in the (u’, w‘) plane (e.g. Lu & Willmarth 1973; Wallace 
et al. 1972). We label the events defined by the four quadrants i as outward interactions 
(i = 1 ; u’ > 0, w‘ > O ) ,  ejections (i = 2; u’ < 0, w’ > 0 ) ,  inward interactions (i = 3; 
u’ < 0, w’ < 0) and sweeps (i = 4; u’ > 0, w’ < 0) ,  respectively. At any point in a 
stationary flow, the contribution to the total Reynolds stress from quadrant i, ex- 
cluding a hyperbolic hole region of size H ,  is 

- 

where the angle brackets denote a conditional average, and where the indicator 

- function Ii, obeys 
1, 

0, otherwise. 

if (u’,w’) is in quadrant i and if Iu‘w’( >, Hlu’w’I, 
(2) IZ,H(u’, w’) = 

The parameter H permits investigation of the contributions to each quadrant of 
extreme values of u’w’. [Note that another definition of H ,  differing from this one by a 
factor p (the correlation coefficient) is also in common use, e.g. by Lu & Willmarth 
(1973).] The stress fraction transported by the contribution defined in (1)  is 

- 
SiSH = (u’w‘)i,EIl u’w’, (3) 

and the time fractionduringwhich this contribution is being made isTi,H = Ii,H(u’, w‘). 
The definitions imply that Si ,H is positive when i is even (sweeps and ejections) and 
negative when i is odd (the two interaction events). Furthermore, 

S1,O + 8 2 . 0  + 83,o + 84.0 = 1, 

since She hole region vanishes when H = 0. 
The stress fractions Si,H are related to the probability distribution of u’ and w’, 

thus: let p ( a ,  a) be the joint probability density function of the rescaled velocity 

(4) 
components a = u p w ,  a = w’/o;u, 
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where (T denotes a standard deviation, so that 42 and &each have unity variance. Then 

I P P m  

- 
where p = u'w'/((Turw) = % is the correlation coefficient. Since p(42, a) is completely 
specified by the infinite set of moments 

- 
Mjk = ,Click (6) 

(where j and Ic are non-negative integers, j + k being the order of the moment M;.,), it 
follows that the moments also determine Si, H .  In establishing a relationship, it is 
convenient to consider only the difference 

= S 4 , H - S 2 , N  (7) 

between stress fractions due to sweeps and ejections, which is a measure of the relative 
importance of the two types of event. 

A specification of ASH in terms of Hjk must include moments of at  least third order, 
since a second-order description would make p(a ,  &) Gaussian and hence would give 
AS, = 0, by symmetry. It willemerge that third-order moments arenot onlynecessary 
for describing AS,, but also suffice to account for its significant properties. Therefore, 
we here give a relationship between AS, and the third-order J& which can be derived 
by a cumulant-discard method (Antonia & Atkinson 1973; Nakagawa & Nezu 1977). 
If p(,Cl, &) is given by a third-order Gram-Charlier distribution, then 

where H' = - p H / ( l  - p 2 ) ,  and where C,  and C2 are two constants constructed from 
the third-order moments: 

(9) 
'1 = (' + f )  ($(M03-J'30) + ?$(-%I -M12))1 

'2 = - ( & ( 2 - p )  (M03-M30)+~(M21-M~2))' 

An important special case of (8) is 

specifying the difference between all stress contributions in the sweep and ejection 
quadrants, in terms of the third moments. Equations (8) and (10) are obtainable 
using a variation of the analysis of Nakagawa & Nezu (1977); see, especially, their 
equations (1 8)-( 29). 

3. Experimental details 
Full experimental details are given in I, but relevant aspects are summarized here. 

The data were gathered in a closed-circuit, low (0.1 yo) turbulence wind tunnel with a 
working section 3 m long, 1.33 m wide and 1.22 m high. The experimental boundary 
layers were formed, with zero pressure gradient, on the upper surface of a splitter 
plate. Measurements were made over the initial smooth surface and over five rough 
surfaces sequentially constructed by planting cylindrical roughness elements (of height 
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Mnemonic 

Array type 
Nearest -neighbow 
separation D 
(mm) 

concentration 
A (mm) 

Friction velocity 
u* (m s-l) 

Zero-plane 
displacement 

Boundary -layer 

Roughness 

d (mm) 

a,,,, (mm) 
( h - d ) / S  
Reynolds numbers: 

thickness S (mm) 

(Re, = U,S/u) 
x 10-4 

R ,  = U* hju 
Total number of 
runs 

Runs used in 
conditional 
analysis 

A 

Smooth 

- 

0 

0.632 

0 

53 
49 
0 

6.2 
- 

8 

Run 10 

B 

Diamond 

56.6 

0.01 1 

0.843 

1 

97 
90 
0.052 

11.3 
337 

15 

- 

c 
Square 

40 

0.023 

0.938 

2 

120 
110 

0.033 

14.0 
375 

16 

Run 53 

D 

Diamond 

28.3 

0.045 

1 .ooo 

3 

120 
112 

0.025 

14.0 
400 

16 

- 

E 

Square 

20 

0.090 

1.025 

4 

120 
112 

0.017 

14.0 
410 

25 

Run 79 

F 

Diamond 

14.1 

0.189 

1.068 

5 

126 
117 
0.008 

14.7 
427 

21 

Run 109 

TABLE 1. Physical and aerodynamic parameters for the six experimental surfaces, with some 
details on the data, set used here. Quoted values of u*, d and 6 were measured at x = 2588 mm, 
U, = 17.5 m s-l. 

h = 6 mm, and diameter 6 mm) in either square or diamond arrays, such that the 
roughness density was doubled between successive surfaces in the sequence. As in I, 
the surfaces will be denoted A ,  B ,  . . . , P. Table 1 summarizes relevant parameters for 
each surface. Velocity components were measured with an X-wire anemometer, each 
signal from which was low-pass filtered at  1.25 kHz and recorded digitally at  a scanning 
rate of 2.5 kHz. A run consisted of readings at 20 positions along a traverse through 
the boundary layer, 8192 scans being recorded at  each position. The results of this 
paper were all obtained at a free-stream velocity U, = 17.5 m s-* and at x = 2588 mm. 
(The leading edge of the splitter plate is at  x = 0, and the plane z = 0 is the upper 
surface of the splitter plate.) For the rough surfaces, all vertical traverses reported 
here were made at  points interstitial to the regular arrays of roughness elements (see 
I for details). 

The normalizing parameters for each surface (the friction velocity u* and the 
boundary-layer thickness 6) are given in table 1. Values of u* were deduced from the 
Reynolds-stress profiles by assuming that u$ = -u'w' in the constant-stress part of 
each profile; 6 was taken as the height a t  which u)wI was 0.5 % of its surface value. 
For comparison, table 1 also shows values of So.,, (based on a velocity defect of 0.5 yo). 
The accuracy of the u* values is discussed in detail in I. 

- 
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e 
Q: 

t 
c r‘ 
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1 2 0  1 2 

a,lu. au/u. 

FIGURE 1. Average profiles for each surface of uU/u* (right-hand abscissa), u,,/u* (top abscissa) 
and u,/u* (left-hand abscissa). 0, A ;  0 ,  B ;  0, C; 0, D; W, E ;  +, P. 

4. Second, third and fourth moments of the velocity fluctuations 
Figures 1 and 2 show the average profiles for each surface of the normalized standard 

deviations of the fluctuating streamwise, lateral and vertical wind components, 
u,/u,, aJu, and a,/u,, and of the correlation coefficient p = u’W’/(a;uw). The 
ordinate is the dimensionless height appropriate to the outer layer, 7 = (z-d) /6 ,  
where d is the zero plane displacement. (The value of 7 at the top of each roughness 
canopy is given in table I;  for all surfaces, the roughness occurs below 7 = 0.05.) The 
data confirm that, at  least for the rough surfaces and outside a region very near the 
surface (of thickness twice the roughness height at  most), normalized second moments 
of the velocity are universal, roughness-independent functions of 7. Data for the 
smooth surface agree well with these universal curves, except for a tendency in the 
lower half of the boundary layer for aw/u, to be slightly lower, and hence for p to be 
slightly higher, for smooth than for rough surfaces. These results agree well with data 
from several other studies (e.g. Antonia & Luxton 1971). 

Figure 3 shows average profiles of the third moments of u’ and w’, presented in the 
form Mjk = = u’5wfk/(aLuk) where j + k = 3, so that Ma0 and Mo, are the skew- 
nesses of u’ and w’, respectively. The third moments follow universal curves which are 
independent of surface roughness, except in a layer close to the surface (7 0.15). 
There, the moments all exhibit roughness dependence such that, a t  any given height, 
I Mjkl increases with roughness concentration. The near-surface behaviour is made 
clear in figure 4, in which surface layer data from figure 3 are plotted against height z. 
(Only four surfaces are represented, for clarity.) Both the extent and the upper height 
limit of surface influence on Mik appear to depend approximately linearly upon 
roughness concentration. 

- -  
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FIGURE 3. Average profiles for each surface of the third moments of u' and w'. 
Symbols as in figure 1 .  
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FIGURE 4. Average profiles in the surface layer of the third moments involving u‘ and tu’, 
plotted against height z,  for surfaces A ,  C,  E and P .  Data replotted from figure 3. 0, A ;  0. C ;  

E ;  +, F .  

Since all the curves in figure 3 have the same shape, a simple proportional relation- 
ship applies between the various third moments : 

M3, = - 2*02M2, = 1*97Nl2  = - 1*7OMo3. (11)  

The coefficients were deduced by plotting M3, against each of M,,, M12 and Mo3. They 
apply to all surfaces, and acceptably describe both the roughness-influenced region 
and the outer boundary layer. Hence, (1  1) is generally applicable to the turbulent 
boundary layers of this experiment. 

Figure 5 shows the kurtoses K,  = z4/4 and K ,  = Z4//.“w for streamwise and 
vertical wind fluctuations. Departure from the Gaussian value of 3 is severe only in 
the outer part of the boundary layer (7 2 0.5). 
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K ,  = wt4/u: 

2 4 6 8 10 
1.0 1 1 1 I 
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OD+ 
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0.2 

0 
1 .o 

0 

0.8 
0 L 

0.2 

0 
2 4 6 8 10 

FIGURE 5. Kurtoses K ,  (bottom) and K ,  (top) for u' and w', for surfaces A ,  C ,  E and P. Data 
from runs 10, 53, 79, 109. Symbols as in figure 4. 

Ku = u ' ~ / o ; ~  

5. Conditional statistics of the Reynolds stress 
plotted against the hole size H for each of 

the four quadrants in the (u', w') plane. The two figures respectively show results for 
the smooth surface ( A )  and the roughest surface ( F ) ,  a t  four heights chosen to approx- 
imate r] = 0.05, 0.2, 0.4 and 0.7; also shown are results for surface F a t  z = 3.2 mm, 
within the roughness canopy. It is evident that, as with the second and third moments 
of the velocity, the behaviour of over both surfaces is similar when 7 2 0.2. 
However, in a region close to the surface, the roughness sublayer, S i , I f ,  is strongly 
dependent on the nature of the surface. 

The 'similar' region is djscussed first. I n  its lower part, near r ]  = 0.2, the transport 
process is relatively symmetric over both surfaces. Ejections and sweeps each con- 
tribute about 60 yo to the total stress (S2,0 M S4,0 M 0.6) and both remain significant 
contributors when H 6 10. The two interaction quadrants are also symmetric, each 
contributing about - 10 yo to the total stress (Sl,o z S3,0 "N - O . l ) ,  andeach ceasing to  
contribute when H 2 5 .  Comparison with profiles of velocity and Reynolds stress, 
presented in I, shows that this region of symmetry coincides with the matched layer 
of 'inertial sublayer ', in which the velocity profile is semi-logarithmic and the Reynolds 

Figures 6 and 7 show stress fractions Si. 
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1.0 I 1 ' 1 ' 1 '  

A 

0.8 Ejection, - 
i = 2  

0.4 O A  - 
O X  

0.2 - A A 

Inward 
interaction, 
i = 3  

Outward 4 
interaction, 
i =  1 

I _I 

20 16 12 8 4 0 0 4 8 12 16 20 

H H 

FIGURE 6. Stress fractions S i , ~  plotted against hole size H ,  for surface A .  0 ,  7 = 0.06; A, 
7 = 0.19; 0, 7 = 0.40; A ,  7 = 0.68. Data from run 10. 

stress is approximately constant. On the other hand, the transport process is strongly 
asymmetric in the outer layer, with ejections becoming progressively more significant 
as height increases; thus, over both surfaces a t  q w 0.7, ejections account for 90 yo of 
the total stress, and sweeps for 40 yo. Also, with increasing 7, a progressively increasing 
stress fraction is contributed at high H values in the ejection quadrant. This general 
picture is in accord with that established in smooth wall studies (e.g. Lu & Willmarth 
1973). 

We turn now to the near-surface region. In  the case of the smooth surface, the 
behaviour of near the surface (at r , ~  = 0.06) is similar to that a t  r , ~  w 0.2, with 
ejections and sweeps of comparable importance. Again, this is consistent with 
earlier observations; Wallace et al. (1972) have shown that only in the viscous sublayer 
( Z U * / V  5 20, v being the kinematic viscosity) does the situation change, with sweeps 
becoming more important than ejections there. Over surface F ,  however, sweeps are 
the dominant contributors to the stress both within and above the roughness canopy; 
when q < 0.03 or x < 9 mm, sweeps contribute SO% or more of the total stress. 
Moreover, sweeps continue to contribute to very large H values ( H  2 20), whereas 
ejections entirely cease to contribute when H 2 3. This is one of the main distinguish- 
ing features of the roughness sublayer; later, it will be shown to occur also over other 
types of rough surface. 

Because significant fractions of stress are transported a t  high values of H ,  especially 
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FIGURE 7 
canopy ( z  

Ejection (i  = 2) Sweep (i  = 4) 
r--------Jc---? c-- 

H 8 i . H  T i . H  8 i . H  T 1 . H  

0 0.287 0.480 0.930 0.247 
5 0 0 0.660 0.061 

10 0 0 0.404 0.025 
20 0 0 0.128 0.005 
30 0 0 0.05 1 0.001 

TABLE 2. Stress fractions S i , ~  and time fractions  ti,^ for surface P ,  z = 3.2 mm 
(within the roughness canopy). 

in the roughness sublayer and the outer layer, the transport process is highly inter- 
mittent, in the sense that much of the stress is transported during periods of strong 
turbulence activity which occupy a small fraction of the time. Table 2 shows the time 
fractions taken by sweep and ejection events at various hole sizes, using the flow over 
surface F at x = 3.2 mm (within the canopy) as an example. Sweeps with H 2 10 
account for 40 yo of the stress in 2.5 % of the time; a t  H 2 20, sweeps account for 13 yo 
of the stress in 0.5 yo of the time. In the outer layer, the ejection quadrant displays a 
similar behaviour. 
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In canopy q = 0.21 q = 0.71 

2 

1 
3 

3 
P O  

-1 

-2 

- 2 - 1  0 1 2  - 2 - 1  0 1 2 - 2 - 1  0 1 2 

d u .  

FIQURE 8. Joint probability density function p(&,&) at three different heights over surface F .  
Contours denote probabilities of 50 yo, 20 % and 10 ?L. Data from run 109. 

-1 -0.5 0 0.5 

A& 
FIGURE 9. The difference ASo between sweep and ejection stress contributions, for surfaces 

A ,  C ,  E and F .  Data from runs 10, 53, 79, 109. Symbols as in figure 4. 

Since the behaviour of Si, is determined entirely by the joint probability density 
function p ( a ,  a), through ( 5 ) ,  it is helpful to examine p(0 ,  21) itself. Figure 8 shows 
contours of p ( @ ,  8) at three different heights over surface P. As height increases from 
the canopy region to the outer layer, there is a clear shift in the most favoured location 
for large values of -4% from the sweep quadrant to the ejection quadrant. In the 
matched layer ( r ]  w 0.2), contours of p ( @ ,  a) resemble the concentric ellipses of the 
joint Gaussian distribution, except for a tendency for @ and 21 to inhibit each other in 
the inward and outward interaction quadrants. This effect was consistently observed 
in the present data set over all surfaces including the smooth surface, A ;  its statistical 
significance is beyond doubt but the cause remains unknown. 

The most important features of the above results for Si ,H can be describedsuccinctly 
by the single parameter AS, = S4,0 - S2,0, the fractional difference between stress 
contributions by sweeps and ejections. Figure 9 shows the variation of AS, with r] for 
surfaces A ,  C, E and F. It is immediately clear that, outside the roughness sublayer, 
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FIQURE 10. M3, plotted against Ah',. Data from runs 10, 53, 79, 109. The dashed line is the 
proportionality AS, = O.37Ma,. Symbols as in figure 4. 

AS, is independent of surface roughness; this conclusion has been anticipated above. 
On the other hand, within the roughness sublayer, AS, increases with roughness con- 
centration from near zero for surface A to more than 0.5 close to surfaces E and F .  
The tendency for sweeps to dominate momentum transfer over a rough surface is 
therefore strongly dependent upon the roughness concentration, being greatest when 
the roughness concentration is highest. 

Figure 9 also demonstrates the strong resemblance between the height dependence 
of AS, and that of the third moments Mjk (shown in figure 3). This is a consequence of 
the relationships (8) and (10) between AS, (or AS,) and the third moments, which may 
be tested quantitatively as follows. 

In  figure 10, M3, (the skewness of u )  has been plotted against AS,, for runs A ,  C, E 
and F. To a good approximation, a single proportionality relates the two quantities 
everywhere in the boundary layer, and for all surface types. The other third-order 
moments, when plotted against AS,, demonstrate similar linear relationships. The 
dashed line in figure 10 represents the proportionality 

AS, = 0-37M3,. (12) 

A prediction of the slope of this line can be made from (lo),  together with the observed 
relationships (1 1) among the third-order Mjk and an approximate correlation CO- 

efficient p = - 0.45, assumed to apply at all heights and roughnesses (cf. figure 2). The 
result is AS, = 0.34M3,, which is in acceptable agreement with (12). Hence, quite a 
good description of the ejection-sweep character of boundary-layer turbulence 
(parametrized by AS,) can be obtained by considering moments of u' or w' up to third 
order only. 
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A more stringent test of the third-order theory is shown in figure 11. For five heights 
over surface F, identical with the heights represented in figure 7,  observed values of 
ALJfI are plotted against H .  Also plotted are the predictions from (8), obtained using 
the measured correlation coefficient and third moments for each level. The agreement 
at H = 0 is good for all levels, but systematic discrepancies appear between theory 
and observation at  higher values of H .  This is not surprising, as progressively higher 
moments are needed to specify the distribution - and hence Si,H and AS, - as values 
of H become larger. It is, of course, possible to extend equation (8) to include higher- 
order moments, hence improving the fit in figure 10; Antonia & Atkinson (1973) have 
thoroughly investigated this as a method for specifying the Reynolds stress distribu- 
tion in terms of its own skewness and kurtosis. However, a specification of AS, - and, 
particularly, of AS,, - at third order is practically useful, for at  least two reasons. First, 
the turbulent energy flux is thereby related to the local ejection or sweep character of 
the stress (see later). Second, a third-order relationship is usually all that can be applied 
in the atmosphere, where problems of non-stationarity make fourth- and higher-order 
moments very difficult to measure reliably. Later, we give a brief comparison of the 
present third-order results with data from roughness sublayer flows in the atmosphere. 
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6. Time and length scales of the turbulence 
The procedure of Lu & Willmarth (1973) was used to investigate the effect of surface 

roughness on the time scales of the large turbulent structures. The method assumes that 
the short, intermittent periods of intense Reynolds stress which characterize turbulent 
boundary-layer flow are directly associated with the large structures discussed in 3 1. 
Some evidence for this assertion comes from the work of Brown & Thomas (1977), 
which has already been mentioned. The implication is that the frequency with which 
large structures pass a given fixed point in the boundary layer is proportional to the 
frequency of suitably defined high-stress events a t  that point. The constant of pro- 
portionality depends on the event definition. 

The number ofejection or sweep eventsin arecordwas counted by setting a threshold 
hole size H ,  and counting the number of negative crossings of the level - H a  by the 
series u'(t) w'(t) with (u', w') in the appropriate quadrant; from this number, a mean 
time interval TE or T, between ejection or sweep events could be found. Clearly TE 
and T, depend upon the choice of H ;  figure 12 shows, for surface F ,  the variation of 
TE and T, with 7 for several different choices of H .  Use of the method for absolute 
determination of time or length scales is therefore precluded. However, given a con- 
sistent choice for H ,  it is legitimate to compare values of TE and T, over different 
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FIGURE 13. Ejection and sweep time scales TE and Ts over surfaces A ,  C ,  E and F,  with trigger 
level H = 4. Data from runs 10, 53, 79, 109. Symbols as in figure 4. 

surfaces, because the moments and probability of distributions of u' and w' are uni- 
versal, roughness-independent functions of 7 in the outer layer. Using the threshold 
H = 4 for both ejections and sweeps, figure 13 shows the variation with 71 of T, and TE 
for surfaces A ,  C, E and F .  The abscissae are normalized as U , T ~ , ~ / B ,  which is clearly 
successful in collapsing data for all surfaces in the roughness-independent part of the 
flow (y 2 0.15). Plots similar to figure 13, but using different values of the threshold 
H (e.g. H = 2, 6, 8, ...) verify that this normalization is equally successful for any 
choice of H .  

It should also be noted that normalization of T, and TE as UmTs,E/6 is unsuccessful 
in collapsing the data. As .,/Urn varies by a factor of nearly 2 from surface A to surface 
F, the resulting plot is a spread over a similar factor. 

We now assume that, for given values of H and y, T, and TE are proportional to the 
time T separating the passage of consecutive large structures through a fixed point. 
The above results then show that a general property of zero-pressure-gradient turbu- 
lent boundary layers is that Tu,/6 is a constant, independent of surface roughness. 
This somewhat modifies the often-quoted finding of Rao, Narisimha & Badri Nara- 
yanan (1971) that the time T scales with U, and S. In fact, there is no contradiction 
between the present results and those of Rao et al., because their data were all obtained 
over a smooth surface by varying U,, with only small consequent change in u,/U. 

The only other information known to us about TE over rough surfaces is the study 
by Sabot, Saleh & Comte-Bellot (1977) of fully developed smooth and rough wall pipe 
flow. They found that TE U,/R, (where U, is the mean core velocity and R, the hydro- 
dynamic radius) increased with increasing surface roughness. At a trigger level of 
H = 9 (using the definition of this paper) and at  7 = 0.4, their results give u,TE/R, 
= 0.12 for a smooth pipe and 0-68 for a rough pipe; in contrast, the present experiment 
gives u*T,/6 = 0.50 at H = 9, for all surfaces. The Reynolds numbers for the two 
experiments were almost identical. The apparent disagreement is probably a con- 
sequence of the different external conditions imposed on the two flows. Fully developed 
pipe flow occurs in a streamwise pressure gradient dependent on the roughness, and is 
governed by a length scale R, which is geometrically fixed; zero pressure-gradient 
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turbulent boundary layers are governed by a thickness 8 which increases with surface 
roughness, as shown in table 1. 

It is of interest to compare the time scales found here with those from other work, 
although it must be borne in mind that no unambiguous signature for large structures 
in a single-point (or even multi-point) velocity record has yet been found; hence, 
estimates of the quantity Turn/& vary by at least an order of magnitude. For example, 
Rao et al. (1971) concluded that TU,/6 x 2.4 by counting periods of strong activity 
in a turbulence signal which had been passed through a narrow band-pass filter. 
Antonia, Danh & Prabhu (1976) summarize other estimates by the same and other 
techniques which give values between 0.5 (their own estimate) and 5. To obtain a value 
of T from the present work, we use the event 'ejection with H = 4', simply because 
figures 12 and 13 show that this event produces values of TE which are independent of 
height outside the roughness sublayer. From figure 13, the appropriate constant value 
of TE is given by TEu*/S = 0.13, for all surfaces. (Figure 13 also shows that T, is 
strongly height-dependent a t  H = 4, especially in the outer layer. This is not surpris- 
ing, as it has already been shown that ejections are far more significant than sweeps as 
contributors to the total stress in the outer layer; it is therefore expected that intense 
sweeps are relatively rare events there.) 

It is helpful to consider a length scale L = Urn T ,  the streamwise separation between 
consecutive large structures (where the advection velocity for large structures is 
assumed to be some fixed fraction of Urn). Then, since L/8 = Turn/& = 0.13(Urn/u,), 
we obtain L/8 = 3.6 (surface A ) ,  2.4 (surface C) and 2.1 (surface F ) .  That these values 
coincide so well with the experimental range of 0.5 to 5 ,  and especially with Rao 
et al.'s value of 2.4, is merely fortuitous. The significant aspect, however, is that L/8 
varies with surface roughness: as the strength of the momentum sink a t  the surface 
increases, more large structures develop per unit streamwise length of the boundary 
layer, where 6 is the length scale. 

7. Discussion 
One implication of ( 1  1)  and (12) is to relate the turbulent flux of turbulent kinetic 

- - -  energy 
FTKE = &( w'u '~  + w'"' + w ' ~ )  

to the ejection-sweep character of the Reynolds stress as parametrized by AS,. If in 
the absence of measurements, w'd2 is approximated by + ( w ' u ' ~ + w ' ~ )  (cf. Antonia & 
Luxton 1971, p. 750) then 

- - -  

PF,, = $ A ~ ~ ( ~ , W ~ ~ , + C Z W & ) ,  (14) 

where c1 = ( - 2-02 x 0.37)-l= - 1.34 and c2 = - 1-59, from (1  1) and (12). It is clear that 
in the roughness sublayer where sweeps dominate and ASo is positive (see figure 9), 
FTKE will be negative, implying a downward turbulent energy flux. Further, the 
decrease of AS, with increasing height in the roughness sublayer implies that the 
transport term - aFTKE/az in the turbulent energy budget, 

F L M  106 
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(where p' is the kinematic pressure fluctuation and B the dissipation rate), represents 
a local turbulent energy loss. This is confirmed in figure 14, in which the production 
term and the transport term are plotted against 7 using the normalizing factor S/u3,, 
appropriate to the outer layer. Close to surfaces E and F (at z z h) the plotted trans- 
port term represents a loss of about 30% of the production term; this fraction de- 
creases with falling roughness concentration to near zero for the smooth surface. These 
results are in agreement with existing turbulent energy balance information from 
smooth walls (e.g. Townsend 1976, p. 293) and from a three-dimensional, random, 
rough surface (Mulhearn & Finnigan 1978). 

It is useful to compare the findings of the present experiment with data from the 
atmospheric surface layer. In  the matched layer, in near-neutral conditions, it is 
known that skewnesses of u and w are small and that the uw distribution does not 
depart far from joint normality (Izumi 1971; Hennemuth 1978). Close to vegetated 
surfaces, on the other hand, the third moments of u and w are of considerable magnitude 
and are signed in accordance with figure 4. Maitani (1978) measured skewnesses for 
u and w of 1 and - 0.5, respectively, at the tops of wheat, rice and rush canopies, and 
observed typical turbulent energy fluxes FTKE of - 224, directed downward. Finnigan 
(1 979 a) applied quadrant analysis to Reynolds-stress measurements above and within 
the canopy, obtaining AS, values between 0.3 and 1 a t  the top of the canopy and as 
high as 2 within the canopy, with significant contributions at  very high values of H in 
the sweep quadrant (cf. figure 6). His data are in broad agreement with (12), despite 
considerable scatter imposed by a short averaging period of 5 min. I t  is clear that the 
behaviour found for the roughness sublayer in the present work is also observed in the 
atmosphere. 

In  interpreting observations within the roughness sublayer, allowance must be made 
for the spatial variability imparted by the three-dimensionality of the flow near the 
roughness. In  the present experiment, lateral traverses were used to place limits on 
this variation, as described in I. For example, it was shown that, in the roughness 
sublayer above the canopy, the standard deviation of u'w' along a lateral traverse is 

- 
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typically 5 % of the mean value of along the same traverse. This remarkably small 
variation was observed over all surfaces a t  heights such that ( z  - h ) / D  2 0.1, where D 
is the spacing between elements. The corresponding lateral variability of the third 
moments is somewhat higher, typically about 20 yo. Nevertheless, this is small enough 
to  give confidence that the features of the roughness sublayer described in this paper 
are of general applicability. Further evidence is provided by the agreement between 
these results and those from several different surface types, including atmospheric 
rough surfaces. 

Finally, i t  must be noted that all surfaces considered here are ‘k-type ’ roughness, 
in the notation of Perry, Schofield & Joubert (1969). It is possible that for ‘D-type’ 
roughness, in which nearly stable recirculating vortices are formed behind roughness 
elements (as for transverse bar roughness, for example), the dominance of sweeps in 
the roughness sublayer will not occur. Townsend (1976, p. 142) has speculated that 
ejections dominate the Reynolds stress close to this kind of roughness. 

The experimental part of this work was carried out in the Department of Meteo- 
rology, University of Edinburgh, with financial support from the Natural Environ- 
ment Research Council. Wind-tunnel facilities were generously loaned by the Director 
of the Fluid Mechanics Unit, Department of Physics, University of Edinburgh. I am 
indebted to the late Dr A. S. Thom for the opportunity to carry out this work, and for 
his perceptive encouragement during its experimental phase. I also thank the 
referees for their detailed comments. 
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